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Introduction The incidence of prostate cancer is increasing in Poland, particularly due to the aging popu-
lation. This review explores the potential of deep learning algorithms to accelerate prostate contouring 
during fusion biopsies, a time-consuming but crucial process for the precise diagnosis and appropriate 
therapeutic decision-making in prostate cancer. Implementing convolutional neural networks (CNNs) can 
significantly improve segmentation accuracy in multiparametric magnetic resonance imaging (mpMRI).
Material and methods A comprehensive literature review was conducted using PubMed and IEEE 
Xplore, focusing on open-access studies from the past five years, and following PRISMA 2020 guidelines.  
The review evaluates the enhancement of prostate contouring and segmentation in MRI for fusion 
biopsies using CNNs.
Results The results indicate that CNNs, particularly those utilizing the U-Net architecture, are pre-
dominantly selected for advanced medical image analysis. All the reviewed algorithms achieved a Dice 
similarity coefficient (DSC) above 74%, indicating high precision and effectiveness in automatic prostate 
segmentation. However, there was significant heterogeneity in the methods used to evaluate segmenta-
tion outcomes across different studies.
Conclusions This review underscores the need for developing and optimizing segmentation algorithms 
tailored to the specific needs of urologists performing fusion biopsies. Future research with larger  
cohorts is recommended to confirm these findings and further enhance the practical application  
of CNN-based segmentation tools in clinical settings.
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INtROdUCtION

Prostate cancer is the second most common cancer 
in men of all age ranges, with estimated number of 
new cases 1,466,718 in 2022 in the world [1]. In Po-
land, there is an increasing trend in prostate cancer 
incidence, with forecasts indicating a 55.2% increase 
in cases compared to the year 2019 [2]. Vital priority 
in coming years should be to increase the capacity 
of the healthcare system to diagnose prostate can-
cer for the early detection of clinically significant 
prostate cancer (CSPCa) and the implementation 
of appropriate therapeutic decisions. We posit that 
optimizing fusion biopsies holds promise as a solu-

tion to this challenge. This can be achieved through 
the integration of deep learning algorithms into the 
biopsy process. In recent years, there has been rapid 
development in artificial intelligence (AI) and ma-
chine learning due to the implementation of deep 
learning [3]. It is important to clarify that while ML 
and DL are related, they are not the same (Figure 1).
Machine learning uses input datasets and algo-
rithms to uncover patterns and make predictions. 
The two primary approaches in machine learning 
are supervised and unsupervised learning. The key 
difference lies in the type of data used to train the 
model. In supervised learning computer is trained 
on dataset that are similar to the problem at hand. 
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Figure 1. Interdependence between artificial intelligence, 
machine learning and deep learning.

Once the model learns the relationship between  
the input and the output, it can classify new un-
known datasets and make predictions or decisions 
based on them. On the other hand, unsupervised 
learning using unannotated data. Model learns from 
input data without expected values, and the avail-
able dataset does not provide answers to the given 
task. Thus, the main goal of supervised learning  
is to predict or classify new, unseen data based on the 
learned patterns, while unsupervised learning aims 
to discover hidden patterns, structures, or relation-
ships within the data. Due to the extensive nature  
of classical machine learning methods and their di-
vergence from the topic of this review, we recom-
mend the article by Kufel et al. [4] for those inter-
ested in a more in-depth discussion of this subject.  
A comprehensive review of the literature on auto-
matic prostate segmentation in multiparametric 
magnetic resonance imaging (mpMRI) images re-
veals a significant focus on assisting radiologists  
in their image interpretation tasks. While these stud-
ies demonstrate the potential of segmentation algo-
rithms to enhance diagnostic accuracy and efficiency, 
they largely neglect the practical application of these 
tools within the workflow of urologists performing 
fusion biopsy procedures.
Our experience indicates that a part of urologists in-
dependently delineate prostate contours on mpMRI 
scans, highlighting the need for segmentation algo-
rithms that seamlessly integrate into their workflow. 
To fulfill this gap, future research should prioritize 
the development and evaluation of segmentation 
tools tailored to the specific needs of urologists dur-
ing fusion biopsy procedures.
We undertake assess the improvement by AI in 
the contouring and segmentation of the prostate 
in MRI used for fusion biopsy and try compare  
the effectiveness of different algorithms build  
in CCNs architecture. 

The principles of fusion biopsy

The distinction between clinically significant and 
clinically insignificant prostate cancer does not have 
a sharp boundary; it is more of a balance between 
the characteristics of the tumor and the patient him-
self. CSPCa can cause morbidity or death, but insig-
nificant not. This distinction is crucial because the 
treatment itself carries the risk of harmful side ef-
fects for the patient. Due to the fact that transrectal 
ultrasound (TRUS)-guided systematic biopsy does 
not detect up to 20% of clinically significant cancers, 
a better alternative was sought [5]. Today, the most 
sensitive method to detect CSPCa is fusion biopsy 
(Figure 2) [6–8]. Currently, there are three types  

of Fusion biopsies: visual estimation TRUS-guid-
ed biopsy (known also as “cognitive”), in-bore  
MRI-guided biopsy and software-based co-regis-
tration guided biopsy with MRI to ultrasound fu-
sion. It is based on the analysis of mpMRI in search  
of lesions suspicious of neoplastic features (regions 
of interest – ROI) and obtaining a biopsy from these 
lesions. It has been more than 10 years since tar-
geted mpMRI-GB was introduced into the diagnos-
tic pathway for detecting early prostate cancers [9] 
European Association of Urology (EAU) in its guide-
lines has approved the higher sensitivity of mpMRI 
compared to ultrasound-guided biopsy to detect 
prostate cancer for International Society of Urologi-
cal Pathology (ISUP) grade ≥2 [10, 11]. Studies in-
dicate that for the ISUP 1 group, systematic biopsy  
is more sensitive than mpMRI-GB; however, this 
often leads to overdiagnosis and possible overtreat-
ment [12]. mpMRI consists of T2 high-resolution 
weighted imaging (T2w) that assesses the content 
of water in tissues and at least two functional MRI 
techniques. These two techniques include diffusion-
weighted imaging (DWI; Figure 3), which evaluates 
the diffusion of water molecules between different 
tissues (from DWI, the apparent diffusion coeffi-
cient [ADC], is calculated) and dynamic contrast-
enhanced imaging (DCE). DCE assesses the spread 
of contrast agent in the prostate gland, which,  
in the case of present tumor tissues, fills them more 
quickly (due to tumor angiogenesis) and also wash-
es them out more rapidly [13]. T2W images are es-
pecially significant as enable the differentiation  
of the zonal anatomy of the prostate gland – the pe-
ripheral zone exhibits high signal intensity, the cen-
tral zone shows decreased intensity, and the tran-
sition zones have heterogeneous intensity. These 
images also facilitate the evaluation and identifica-
tion of cancer foci, which most commonly manifest 
as low intensity within the peripheral zone. DWI 
and DCE are utilized for further assessment of the 
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Figure 2. Fusion performed on Urostation (Koelis). Contouring: A) The first step is to mark 3 points that generate the original  
outline: green – the top of the prostate gland, red – the base above the entrance to the urethra, and blue – the back wall  
of the gland. The software then generates the primary outline which we already contour by marking yellow points and adjust-
ing it to the outline of the gland: B) mid, C) apex, d) base. On the finished outline we mark changes using T2 and ADC or DWI 
sequences, for more discrete lesions we use contrast sequences. Trinity software allows overlapping of images. The next step  
is to repeat these steps, but this time we work on the ultrasound image from the endorectal transducer generated live.  
E) After creating two contours, the apparatus performs a fusion of the images, which we check and confirm, and after confirma-
tion we receive the superimposed lesions on the ultrasound image and can proceed to the actual part of the biopsy.

prostate anatomy and ROI. Integral analysis of these 
imaging modalities significantly increases precision 
and sensitivity in the detection of neoplastic lesions 
within the prostate gland [6]. To optimize and uni-
fy the evaluation of mpMRI, the American College  
of Radiology, European Society of Urogenital Radiol-
ogy (ESUR), and the AdMeTech Foundation devel-
oped a standardized method for assessing mpMRI 
images, commonly known as PI-RADS (Prostate 
Imaging-Reporting and Data System) [14]. PI-RADS 
employs a stratification system that assigns values 
ranging from 1 to 5. It is advised that for lesions 
categorized as grade 3, a biopsy should be contem-
plated, whereas for lesions classified with values  
of 4 and 5, the execution of a biopsy is emphatical-
ly recommended [15]. Over the years, the authors 
achieved the intended effect and enhanced the qual-
ity of prostate cancer detection due to PI-RADS [16].  
PI-RADS has also been incorporated into repre-
sentative clinical guidelines and has been used  
in clinical research as a tool for risk stratification 
and determining the biopsy pathway [15, 17]. Re-
search assessing the effectiveness of PI-RADS cri-
teria via targeted biopsy has demonstrated signifi-

cant predictive power in determining the likelihood  
of prostate cancer, alongside a notable correlation 
with the Gleason score. The current version in use 
is PI-RADS 2v1. 
The mentioned fusion biopsy techniques mainly 
differ in the way the needle is targeted in the ROI 
(Figure 4). In the cognitive method, the operator 
analyzes prostate gland map and, based on their 
own experience, collects samples from the pros-
tate. This is a low cost method, but the learning 
curve is high. In the in-bore biopsy method, the 
biopsy is performed while the patient lies inside  
the MRI scanner. This method’s advantage lies  
in its minimal image distortion detection, while its 
drawbacks include the high cost associated with 
prolonged MRI usage and the limited availability 
of this testing form. Prince and his research group 
in their study demonstrated a higher sensitivity to 
detect CSPCa through in-bore compared to fusion 
MRI-targeted biopsy [18]. The final method is soft-
ware-assisted fusion biopsy, which involves manu-
ally or automatically, delineating the entire pros-
tate on mpMRI and identifying ROIs. This phase, 
if manually, is not infrequently laborious, tedious, 
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and time-consuming, highly depending on clinician 
experience and skills [19].
Concurrently, TRUS is performer in real-time, and 
with the aid of software, the mpMRI images are 
merged. This co-registration is crucial step in the 
Fusion process, where the three-dimensionally (3D) 
segmented area of the prostate on MRI images is 
„combined” or aligned with the 3D captured area  
of the prostate on real-time US images. Following 
the completion of the co-registration, the process 
advances to the biopsy phase of the prostate gland.  
Two methods of image registration between mpMRI 
and real-time TRUS are available on the market: 
static, which directly overlays images without con-
sidering changes in the prostate visualization caused 
by compression from the US probe or the patient’s 
positioning, and elastic, where the software accom-
modates differences in the gland’s chape between 
MRI scans and TRUS. 
The biopsy fusion stations available on the market 
are presented in Table 1.

The principles of deep learning 

Deep learning is powered by neural networks, which 
mimic the information-transmitting behavior of hu-
man neurons. Similar to our brains, deep learning 
begins with the introduction of information, such as 
an image or sound. This information is then passed 
through the network, analyzed by successive layers 
until an output is generated. Each layer comprises 
numerous neurons that process the input data.

The number of hidden layers distinguishes between 
artificial neural networks (ANNs), which have one 
hidden layer, and deep neural networks (DNNs), 
which have multiple hidden layers (Figure 5).
 Regardless of the training method employed, ma-
chine learning algorithms improve their perfor-
mance on new data as they are exposed to more 
training examples. The primary distinction be-
tween ANNs and DNNs lies in their data require-
ments. DNNs demand significantly more input data,  
as they must learn to classify data independently.  
In contrast, ANNs rely on pre-processed and labeled 
data. One of the examples of DNN are CNNs [4]. 
Currently, the most widespread architecture in the 
medical industry is CNNs [21], which are primarily 
used for the analysis of advanced imaging, including 
MRI scans. CNNs are inspired by the functioning 
of the animal visual cortex, which attempts to emu-
late hierarchical, layered information processing 
[22]. A CNN, in contrast to traditional techniques, 
allows unsupervised learning and selects its own 
feature maps automatically while training. The ba-
sic unit of the neural network consists of: an input 

Figure 3. Diffusion-weighted imaging. Figure 4. Example of fusion.

Table 1. The biopsy fusion stations available on the market

Biopsy fusion stations Producer

UroNav Philips 

BiopSee MedCom

BioJet DK Technologies

Urostation Koelis

Semirobotic Artemis Eigen

Virtual Navigator Esaote
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The ORSI Academy presents in an understandable 
manner the application of CNNs in creating soft-
ware that assists operators during robotic surger-
ies as well as for training purposes [24]. If anyone 
is interested in more comprehensive explanation  
of deep learning, we highly recommend review ar-
ticle created by Alzubaidi et al. [21]
Analysing the experiments conducted by various 
researchers, we noticed that most of algorithms  
to a greater or lesser extent drew from the achieve-
ments of Ronneberger, Fischer, and Brox, i.e., 
CNNs named U-Net [25]. U-Net is a powerful tool 
for identifying and separating different parts or un-
usual areas in medical images (Figure 6). It works 
by analyzing images at various levels of detail. 
This architecture consists of an encoder-decoder 
structure with skip connections. The encoder part  
of the network gradually reduces spatial dimen-
sions while increasing the number of feature chan-
nels through successive convolutional and pooling 
layers. This process captures hierarchical feature 
representations at multiple scales. The decoder 
part, on the other hand, performs upsampling and 
convolution operations to progressively reconstruct 
the segmented output. Skip connections are estab-
lished between corresponding encoder and decoder 
layers to enable the integration of both low-level 
and high-level features, aiding in the preservation 
of fine details during the segmentation process.
One of the limitations of using these algorithms  
is their requirement for a vast database for training. 
Another limitation is the significant computational 
power of computer hardware that must be provided 
for CNNs to operate. Nowadays, researchers are try-
ing to overcome these limitations by data augmenta-
tion, transfer learning, and creating more efficient 
network architectures [26–28]. 

layer, connected “nodes” (equivalent of neurons) 
called hidden layers, and an output layer. Within 
the scope of hidden layers are convolutional layers 
(conv), pooling layers, flatten layer, and fully con-
nected (FC) layers. Convolutional layers are made 
up of filters/kernels and, similar to neuronal cells, 
aim to extract features from the image that help  
in understanding the image. CNNs learn these fil-
ters, which convert the given image to extract its fea-
tures like edges, colors or textures. Then, the output 
of the conv layer goes to an activation function layer 
where the ultimate goal is to map the representa-
tion in the input to a different output as per the 
requirements of the task. The activation function  
is nonlinear because without this, a neural network, 
no matter how many layers it has, would behave 
like a single layer perceptron, capable of learning 
only linear data. Then the image size is reduced in 
the pooling layer. This layer may realize the reduc-
tion using max or average pooling by converting  
a square (typically two by two pixels) into one pixel. 
In this way, overfitting is avoided, which is the phe-
nomenon of the model being too closely fitted to the 
training data, critically important for maintaining 
the model’s ability to generalize to previously un-
seen data. Such condensed data then go to a layer 
where neurons receive input from all the neurons  
of the previous layer. This is the FC layer, which can 
be likened to bridge between the features extracted 
by the previous layers and the final outcome/predic-
tion, such as identifying the contours of the prostate 
in the mpMRI case [23]. The performance of CNNs 
can be influenced by various factors, with the most 
crucial ones being the selection of activation func-
tions and the number of hidden layers. Networks 
trained on extensive datasets encompassing phe-
notypic and pathophysiologic variations will inher-
ently be more robust compared to networks trained 
on limited datasets lacking such variety.

Figure 5. A simplified example of artificial neural network and 
deep neural network [20].

Figure 6. U-Net architecture (example for 32 × 32 pixels in the 
lowest resolution) [25].
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It is crucial to mention that the aforementioned 
software primarily serves to contour the prostate 
on desktop computers or laptops and not on fusion 
biopsy workstations. The literature includes review 
papers on AI-based software for automatic prostate 
segmentation, but these are predominantly intended 
for radiologists. We have selected software’s directly 
associated with companies producing fusion biopsy 
platforms as these are directly related to the work  
of urologists.
ProMap Contour™ is an added software option 
to the Koelis Trinity® system. There are no articles 
assessing the time required for automatic segmen-
tation, its accuracy, or validation. The advantage  
of this product lies in its integration into a plat-
form used for performing fusion biopsies, enhancing  
the workflow for urologists.
ProFuse CAD Semirobotic Artemis (Eigen). 
This software is part of the Siemens Healthineers fu-
sion biopsy platform and offers automated prostate 
gland contouring and segmentation. It utilizes deep 
learning algorithms to generate accurate contours 
on T2-weighted MRI scans. We were unable to lo-
cate any studies that validate its accuracy and speed  
in segmentation
In the reviewed literature, CNN-based algorithms 
achieved comparable accuracy in prostate segmenta-
tion tasks compared to MIM Symphony Dx™. Howev-
er, CNN-based algorithms demonstrated significant-
ly faster segmentation times in the four studies that 
directly assessed this metric. While MIM Symphony 
Dx™ achieves competitive accuracy, its segmenta-
tion speed is slower than CNN-based approaches.  
The segmentation speed of MIM Symphony Dx™  
is reported to be under 90 seconds per patient, where-
as CNN-based algorithms achieve segmentation 
times in the range of seconds. It is important to note 
that the studies referenced here have a relatively 
small sample size, and further research with larger 
cohorts is warranted to solidify these findings.
MIM Symphony Dx™ relies on a multi-atlas seg-
mentation technique, which may be less generaliz-
able to MRI scans with significant variations in con-
trast or acquired from different vendors compared 
to CNNs.

Consumer platforms

It is important to highlight that various software 
platforms utilizing deep learning algorithms for the 
automatic contouring of the prostate gland are avail-
able on the market. However, the majority of these 
platforms are designed for evaluating mpMRI based 
on the PIRADS v 2.1 scale by radiologists, rather 
than as integral components of fusion biopsy work-
stations (Table 2).
MIM Symphony Dx™ utilizes AI to automatical-
ly segment the prostate gland and identify ROIs.  
Its automatic segmentation is based on multi-atlas 
segmentation, wherein a collection of MRI scans 
with manually segmented prostates by experts 
serves as the foundation. The atlas subjects are reg-
istered to the test case using a normalized intensi-
ty-based free-form deformable algorithm. Deform-
able image registration (DIR) is a technique used 
in medical imaging to align two or more images  
of the same anatomy acquired from different per-
spectives or at different times. The volumes of in-
terest (VOIs) are then transformed to the test case 
using this deformable registration and combined 
using Simultaneous Truth and Performance Level 
Estimation (STAPLE) methods. STAPLE consid-
ers the original contours and computes a probabi-
listic estimate of the true representation of their 
combination. Atlas performance declined when  
tested with images of differing contrast and MRI 
vendors. A study published in 2018 evaluated  
an automatic multi-atlas-based segmentation 
method for generating prostate contours. The simi-
larity coefficients between the selections of one and 
two experts served as benchmarks for assessing 
the quality of the atlas (expert radiation oncolo-
gists with 10 and 26 years of experience). The seg-
mentation results were DSC (mean ±σ) 0.81 ±0.15 
and Hausdorff distance (mm) (mean ±σ) 2.7 ±1.9. 
Segmentation time averaged less than 90 seconds  
per patient [29]. 
Philips DynaCAD automates segmentation for 
clinical use. However, its performance remains un-
clear due to the proprietary nature of the software 
and the lack of performance metrics such as the Dice 
score. According to the official website, UroNav does 
not include an algorithm for automatic segmenta-
tion but instead imports segmented images from the 
DynaCAD system. A significant limitation is that us-
ing this functionality requires the purchase of both 
products.
AI-Rad Companion also provides automated 
segmentation of the prostate, but no scientific re-
ports on segmentation speed or accuracy have been 
found.

Table 2. Software along with their companies

MIM Symphony Dx™ MIM Software Inc.

Philips DynaCAD Philips

AI-Rad Companion Siemens Healthineers

ProMap Contour™ Koelis Trinity®

ProFuse CAD Semirobotic Artemis (Eigen)
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ing steps, considerations for model-fitting problems  
and hyperparameter tuning could hinder reproduc-
ibility.

Comparative analysis

Database searches provides 44 results. After title 
and abstract screening, the full texts of 31 report-
ed studies were analyzed, but only 12 were found 
eligible for inclusion. The excluded articles are out-
lined in Supplementary Table 1. A flowchart based  
on PRISMA 2020 statement is shown in Figure 7.
The results section is divided into three parts: seg-
mentation accuracy, validation, and improvement  
of segmentation time.

Segmentation accuracy of prostate

Results in the segmentation accuracy of prostate cat-
egory are shown in Table 3.
The Dice similarity coefficient (DSC) is a diagnostic 
tool that assesses the degree of similarity between 
two sets of data. The DSC score ranges between  
0 and 1, where 0 indicates no similarity, and 1 rep-
resents perfect overlap. The Hausdorff distance  
to evaluate the results of the algorithm developed. 
The Hausdorff distance is a measure used to quantify  

LItERAtURE REvIEw

Search strategy

To conduct a comprehensive review, we search lit-
erature across PubMed and IEEE Xplore. These 
sources were selected because of their extensive 
publications of research in this area of study. Search 
included observational, randomized and non-ran-
domized studies. It was limited to articles in English 
language with an abstract and published in peer-
reviewed journals during the last 5 years in open 
access. Search was performed by title or abstract, 
utilizing keywords, as follows: for PubMed: (imag-
ing-guided biopsy OR fusion biopsy) AND (mpM-
RI OR T2W) AND ( deep learning OR CNN) AND 
(prostate segmentation OR prostate OR prostate 
contour), for IEEE Xplore (“All Metadata”:fusion 
biopsy) AND (“All Metadata”:prostate contour) OR 
(“All Metadata”:prostate segmentation) AND (“All 
Metadata”:convolutional neural network) Filters Ap-
plied: 2019–2024. The last search was conducted on 
20.05.2024. The search was supplemented by check-
ing published reviews, and their references. Exclu-
sion criteria were reviews, letters, non-peer reviewed 
articles, conference abstracts and proceedings. Our 
method for identifying and evaluating data complied 
with the Preferred Reporting Items for Systematic 
Reviews and Meta-analyses (PRISMA) 2020 state-
ment and checklist.

Data extraction

The full texts of the qualified papers chosen for re-
view were acquired, and the reviewers independently 
collected all study data, resolving disagreements via 
consensus. The references, year of publication, study 
setting, ML approach, improvement of segmentation 
time, performance measures used and accuracy at-
tained were all extracted for every included paper, 
and comparative analyses were conducted on the ex-
tracted dataset. Two independent authors (MZ, PC) 
screened and extracted the studies. A third reviewer 
(AK) was consulted in the event of discordance re-
sulting in agreement in all instances.

Risk of bias

Our study assessment aims to evaluate the meth-
odological quality and potential sources of bias that 
could influence the reported findings. For instance, 
studies that rely solely on single-center datasets  
or imbalanced class distributions may introduce bi-
ases that affect the model generalizability. Addition-
ally, the lack of clear documentation of preprocess-

Figure 7. PRISMA numerical flow guideline for systematic 
review employed in this study.
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Soerensen et al. [31] created an algorithm demon-
strates a narrow range in the DSC test <0.90, in-
dicating consistency in the algorithm’s accuracy  
in segmentation in various cases. Besides testing  
the algorithms on an internal database of T2-MRI 
scans, for further evaluation of the code’s generaliza-
tion capabilities, the tested its efficacy on two pub-
licly available datasets: The results demonstrated  
a performance of 0.87 ±0.05 on the PROMISE12  
dataset and 0.89 ±0.05 on the NCI-ISBI dataset.  
Researchers confirmed a high level of precision of au-
tomated segmentation obtained 2.8 mm Hausdorff 
distance. The culmination of the experiment was 
the application of ProGNet in practice, during work  
in the clinic. ProGNet (average DSC = 0.93 ±0.03) 
significantly outperformed radiology technicians (av-
erage DSC = 0.90 ±0.03, p <0.0001) in an 11-case set  
of prospective fusion biopsy tests.
Liu et al. [40] developed novel CNN for automatic 
segmentation of the prostatic transition zone (TZ) 
and peripheral zone. DSC was used to evaluate the 
segmentation performance. DSCs for peripheral 

the difference between two sets of points. The Pear-
son correlation coefficient values range from –1 to 1,  
with 1 and –1 denoting a strong linear relationship 
between two variables, while a value proximate  
to 0 indicates an absence of linear correlation be-
tween the variables.
DSC ranged from 0.74 to 0.94, indicating good to ex-
cellent agreement between CNN segmentation and 
expert annotations.
While DSC appears as the predominant metric  
for evaluating prostate segmentation algorithms 
in the reviewed studies, a closer examination re-
veals a lack of uniformity in the utilization of oth-
er validation metrics. Within the twelve studies re-
viewed, only two employed the Hausdorff distance, 
and two others utilized the Pearson correlation  
coefficient.
Among studies reviewed, only one compared the ac-
curacy and time efficiency between the algorithm 
and human performance in segmenting the prostate 
[31], while another compared the consistency of hu-
mans and AI in delineating the prostate [40]. 

Table 3. Segmentation accuracy of prostate

Investigators Mean DSC Human experts (mean DSC) Mean HD Pearson correlation 
coefficient

Bardis et al. [30] 0.940 None Not used 0.981  
(95% CI: 0.966–0.989)

Soerensen et al. [31]
0.92 ±0.02 (100)

(retrospective internal test)
0.93 ±0.03 (prospective 11 patients)

DSC = 0.89 (retrospective 
internal test)

0.90 ±0.03 (prospective 11 
patients)

Algorithm reduced 
the mean HD by 2.8 

mm compared to the 
radiology technicians

Ushinsky et al. [32] 0.898 None Not used 0.974

Palladino et al. [33] 0.7773 for internal dataset
0.7709 for external dataset None Not used

Hassanzadeh  et al. [34] 0.873 None Not used

Ren and Ren [35] 0.9394 none Not used

Huang et al. [36] 0.8782 None 10.9443

Qian et al. [37] 0.908 (for PROMISE12)
0.892 (for ProstateX) None 9.87 (for PROMISE12)

10.45 (for ProstateX)

Su et al. [38] 0.9071 None Not used

Qian et al. [39] 0.8912 (for ProstateX) None Not used

Liu et al. [40]

PZ 0.74 ±0.08 internal testing dataset
TZ 0.86 ±0.07 internal testing dataset

PZ external data 0.74 ±0.07
TZ external data 0.79 ±0.12

Expert 1 vs expert 2
PZ 0.71 ±0.13

p <0.05
TZ 0.75 ±0.14

p <0.051
when taking expert 1’s 

annotations as the ground truth

Not used

Comelli et al. [41]
ENet showed a mean DSC of 0.9089 ±0.0387,

U-Net of 0.9014 ±0.0469, and
ERFNet of 0.8718 ±0.0644

None Not used

1Authors used Wilcoxon Signed-Rank Test
DSC – Dice similarity coefficient; ENet – efficient neural network; ERFNet – efficient residual factorized convNet; HD – Hausdorff distance; PZ – peripheral zone;  
TZ – transition zone
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2D U-Net to assess its clinical utility in identifying  
and segmenting the entire prostate gland in mpMRI 
images [32]. (The algorithm is similar with developed 
by another researcher team Michelle Bardis et al.  
However, Michelle Bardis adapted their network to 
segment not only the entire prostate but also PZ and 
TZ by producing 3 separate, collaborative CNNs). 
Algorithm was verified by a board-certified urolo-
gist. On each axial T2WI included in the training 
database, two specialist radiologists contoured the 
prostate gland to create ground truth for assess-
ing the segmentation quality by the algorithm. Re-
search team from United States implemented for the 
quantitative evaluation of the segmentation overlap  
of the prostate image post manual and automatic 
segmentation, the authors employed the DSC. Addi-
tionally, the Pearson correlation coefficient was uti-
lized to assess the neural network in predicting pros-
tate volume. Findings are documented in Table 5. 
The authors noted that manual segmentation of the 
prostate requires approximately 5–10 minutes per 
patient. Accordingly, the neural network was able  
to segment the prostate in 9.4 seconds per patient. 
Comelli et al. [41] presents three deep-learning ap-
proaches, namely U-Net, efficient neural network 
(ENet), and efficient residual factorized convNet 
(ERFNet), whose aim is to tackle the fully-auto-
mated, real-time, and 3D delineation process of the 
prostate gland on T2-weighted MRI. They found 
that ENet and U-Net are more accurate than ERF-
Net, with ENet much faster than U-Net. Specifically, 
ENet obtains a segmentation time of about 6 sec-
onds using central processing unit (CPU) hardware 
to simulate real clinical conditions where graphics 
processing unit (GPU) is not always available.
Despite the absence of automatic segmentation speed 
assessment in the remaining eight studies, they pro-
vide significant insights into the accuracy of these 
algorithms, highlighting the potential for integrat-
ing CNNs into clinical practice.

dISCUSSION

Based on the studies and comparisons we collected, 
we have reached several conclusions, summarized 
below.
In comparative experiments involving ANNs and hu-
man experts, the algorithms demonstrated compa-
rable, and in some cases even superior, performance  
in prostate segmentation (Soerensen et al. [31] and 
Liu et al. [40]). In studies where algorithms were 
solely compared to ground truth annotations made 
by radiologists or urologists, the DSC did not fall 
below 74%. It is important to note, however, that  
a significant limitation of these experiments is  

zone (PZ) and prostatic transition zone (TZ) were 
0.74 ±0.08 and 0.86 ±0.07 in the internal testing 
dataset (ITD) respectively. In the external testing 
dataset (ETD), DSCs for PZ and TZ were 0.74 ±0.07 
and 0.79 ±0.12, respectively. The inter-reader con-
sistency (Expert 2 vs Expert 1) were 0.71 ±0.13 (PZ) 
and 0.75 ±0.14 (TZ)

Validation

Results in the validation category are shown in Ta-
ble 4.
The most commonly used technique for training and 
validation was k-fold cross-validation. In each iter-
ation of this procedure, the dataset is divided into  
k subsets, with k-1 subsets used for training and the 
remaining subset used for validation. This process 
is repeated k times, ensuring that each subset is 
used exactly once for validation. This approach aims  
to optimize the utilization of the available dataset  
for robust model evaluation.
Number of epochs ranged widely, from 10 to 500.
The studies employed a diverse range of databases, 
encompassing both in-house image collections and 
publicly accessible datasets such as PROMISE12 and 
ProstateX: 
• In-house database 6 studies,
• PROMISE12 6 studies,
• ProstateX 3 studies,
• Other datasets 2 studies.
PROMISE12 data set contained prostate MR images 
with well-curated prostate organ labels.
The definition of “ground truth” (gold standard) var-
ies across studies. Certain investigations utilize radi-
ologists, whereas others rely on urologists.

Improvement of segmentation time

Results in the improvement of segmentation time 
category are shown in Table 5.
Soerensen et al. [31] describe a promising result  
in their experiment: after a 20-hour training ses-
sion, the ProGNet algorithm segmented a single case  
in roughly 35 seconds, resulting in the completion  
of a database of 100 clinical cases in about 1 hour. For 
comparison, radiologists took an average of 10 minutes 
per case. Completing the entire database took about 
17 hours. ProGNet can save up to 17 times more time 
according to this trial. A limitation of this result may 
be the comparison of the algorithm with radiology 
technicians. In many facilities around the world, the 
aforementioned segmentation is performed by physi-
cians with specialties in urology or radiology. 
In another study, Ushinksy et al. modified tradi-
tional 2D-2D U-Net technique creating hybrid 3D-
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Table 4. Validation

Investigators Ground truth Number of epoches Type of used database Evaluation Data augmentation

Bardis et al. 
[30]

A board-certified  
subspecialty-trained  

abdominal radiologist with more 
than 10 years of experience

U-NetA, U-NetB,  
and U-NetC were 

trained for 50,000, 
18,000,  

and 3,800 iterations
U-NetA trained for 

approximately  
7 hours, while U-NetB 

and U-NetC each 
trained for 5 hours1

Own database 242  
T2-weighted images 
(6,292 axial images)

Included datasets were 
split into 60% training, 

20% validation,  
and 20% test sets  

for model development

Not explicitly stated

Soerensen  
et al. [31]

Urologic oncology expert  
with 7 years of experience 150

Own database: 905 
T2-MRI and 26 T2-MRI 

(PROMISE12) 
30 T2-MRI (NCI-ISBI)

A deep learning model, 
ProGNet, was trained  

on 805 cases. ProGNet 
was retrospectively tested 

on 100 independent 
internal and 56 external 

cases.
Algorithm was 
prospectively 

implemented as part 
of the fusion biopsy 

procedure for 11 patients

Not explicitly stated

Ushinsky  
et al. [32]

Two specialist radiologists
images who were verified  

by a board-certified urologist
Not provided

Own database:
299 MRI

(7,774 images)
Five-fold cross-validation Not explicitly stated

Palladino  
et al. [33]

Ground truth was created using  
a semi-automatic procedure

Not provided  
(less than 2 hours)

ProstateX as training set 
(internal)  

and own dataset:
MRI Local Hospital –  
6 patients (external)

20% of the images were 
used  for testing and the 
remaining images were 

split with a ratio  
of 0.8 in training set  

and 0.2 in validation set

Not explicitly stated

Hassanzadeh 
et al. [34]

Experienced readers at each center 
used a contouring tool then A second 

expert (C.H.) who has read more 
than 1,000 prostate MRIs, to make 

sure they were consistent

25 epochs

PROMISE12 []
50 MRI (1377 image 

slices) volumes  
for training,  

30 MRI volumes  
for testing  

(without grand truth)

Ten-fold cross-validation

Random rotation 
within a 10-degree 

range, horizontal flip, 
vertical flip, zoom, 

horizontal and vertical 
translation, and 

elastic transformation
(result = 150,000 

slices)

Ren and Ren 
[35]

Three clinicians with 5 years 
of experience spent 3 months 

annotating the segmented region.
The other three specialists examined 
and corrected the annotated regions

400–500 epoch

Own database:
180 patients  

(122 healthy and 
58 prostate cancer 
patients) scanned  

on the GE 3.0T 750 MR

Five cross-validation 
approach

Rotation, random 
merging, zooming  

in and out

Huang et al. 
[36]

Experienced readers at each center 
used a contouring tool then A second 

expert (C.H.) who has read more 
than 1,000 prostate MRIs, to make 

sure they were consistent.
I2CVB – An experienced radiologist

200 epoch

PROMISE12 50 MRI 
(1,377 image slices) 
volumes for training,  

30 MRI volumes  
for testing and I2CVB 

Not explicitly stated

Rotation, zooming 
in and out, random 

horizontal or 
vertical flip, random 
movement along the 

X-axis and Y-axis

Qian [37]

Experienced readers at each center 
used a contouring tool then  

A second expert (C.H.) who has read 
more than 1,000 prostate MRIs, 

to make sure they were consistent 
(PROMISE12)

In order to verify the generalization 
performance of the prostate 

segmentation algorithm, prostate 
masks were marked on the MR 
images of 40 randomly selected 

patients from the ProstateX dataset 
by a professional radiologist

10 PROMISE12 dataset 
and ProstateX dataset Five-fold cross-validation Not explicitly stated
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the lack of a human segmentation accuracy bench-
mark on the datasets used to evaluate the algo-
rithms. Integration of CNN-based segmentation into 
clinical practice requires validation in larger cohorts. 
Of the studies available to us, four assessed the speed 
of prostate segmentation from T2-weighted images. 
In each case, segmentation of a single instance took 
less than one minute, with the fastest algorithms seg-
menting the prostate in approximately 0.3 seconds. 
In comparison, manual segmentation is reported by 
authors to take 5–10 minutes per patient [32], 10 min-
utes per patient [31]. From our experience, manual 
segmentation takes about 4–10 minutes per patient, 
depending on individual conditions and the quality 
of mpMRI. Based on this information, it can be esti-
mated that AI-based CNNs can segment the prostate 
800 to 2,000 times faster than humans. It is also im-
portant to remember that the speed of the algorithm 
is primarily dependent on the computational power.

Challenges and limitations 

In the course of our investigation and analytical 
examination of deep learning algorithms applied  

Investigators Ground truth Number of epoches Type of used database Evaluation Data augmentation

Su et al. [38]

Experienced readers at each center 
used a contouring tool then A 

second expert (C.H.) who has read 
more than 1,000 prostate MRIs, 

to make sure they were consistent 
(PROMISE12)

Not explicitly stated PROMISE12 Not explicitly stated
Elastic deformation, 

rotation with 90, 180, 
270, and flip

Qian et al. 
[39]

Randomly selected 35 patients’ 
MR images to label their prostate 

contours
60 ProstateX and 

PROMISE12 Five-fold cross-validation

Geometric 
transformations,local 

disturbance and 
combined disturbance

Not explicitly stated

Liu et al. [40]

PROSTATEX – two MRI research 
fellows, where the contours 

were later cross-checked by both 
genitourinary (GU) radiologists 
(10–15 years of post-fellowship 

experience interpreting over 1,000 
prostate mpMRI) and clinical 

research fellows 
WMHP – two clinical genitourinary 
(GU) radiologists research fellows, 

supervised by expert GU radiologists 

100
PROSTATEX (internal 
testing) and WMHP 

(external testing)
Five-fold cross validation

Flipped horizontally, 
rotated randomly 

between [–5°, 
5°], elastic 

transformations

Comelli et al. 
[41]

A set of trained clinical experts 
(FV, MP, GC, and GS authors) hand 

segmented the prostate region. 
The simultaneous ground truth 

estimation STAPLE tool (Warfield, 
Zou i Wells, 2004) was used to 

combine the different segmentations 
from the clinical experts  

in a consolidated reference

100 Own data set: 85 axial 
T2W Five-fold cross-validation

Six different 
modalities – not 
explicitly stated

1An epoch refers to one complete pass through the entire training dataset. Iterations, on the other hand, can represent individual training steps within an epoch.  
The number of iterations per epoch can vary depending on the batch size (number of images processed at once).

Table 5. Improvement of segmentation time

Author, reference Time

Bardis et al. [30] 

The three U-Nets completed their tasks of boun-
ding box creation, prostate segmentation, and 

prostate zone classification in 0.196 second, 0.226 
second, and 0.219 second

Soerensen et al. [31] 35 seconds to segment each case

Ushinsky et al. [32] 9.4 seconds per patient

Palladino et al. [33] Not tested

Hassanzadeh [34] Not tested

Ren and Ren [35] Not tested

Huang et al. [36] Not tested

Qian [37] Not tested

Su et al. [38] Not tested

Qian et al. [39] Not tested

Liu et al. [40] Not tested

Comelli et al. [41]
ENet – 6.17 seconds

ERFNet – 8.59 seconds
U-Net – 42.02 seconds

ENet – efficient neural network; ERFNet – efficient residual factorized convNet

Table 4. Continued



Central European Journal of Urology
34

ous search strategy and carefully considered the in-
clusion and exclusion criteria for studies. We also ac-
knowledge that further research with larger sample 
sizes is needed to confirm our findings.
The last notable limitation of this review is the lack 
of open access to a significant number of articles.  
By restricting access to knowledge and expertise, 
it hinders comprehensive reviews, slows scientific 
progress, and creates an uneven playing field.

Future directions for research and clinical practice

As proven above, there is a significant gap in research 
on the implementation of CNNs for prostate segmen-
tation during MRI-targeted TRUS biopsies and their 
integration into clinical practice. That is why the au-
thors of this review highly recommend more experi-
ments in this field. Benefits to clinical practice would 
include speeding up the biopsy process. Implement-
ing automatic prostate segmentation to optimize 
the process would allow time for one more patient 
within the same timeframe as manual segmentation. 
The number may not seem staggering, but multi-
plying it by the number of facilities performing this 
examination would result in a satisfactory outcome 
in expanding the bottleneck. It should be noted that 
the rate of “machine” evaluation is predominantly 
determined by the computational capacity of the 
computer utilized. Hence, the greater the comput-
ing power dedicated to prostate segmentation,  
the quicker the automatic segmentation process can 
occur, potentially reaching to receive results even  
in 1 second or less as we could see in results.
Maris [45] has published a case study in “Medical 
Robotics” highlighting the PROST robot as a sig-
nificant advancement in integrating AI into pros-
tate biopsy procedures. The robot utilizes a prostate 
segmentation model known as PROST-Net, initial-
ly described by Palladino et al. [33]. In validation  
on ultrasound test data, PROST-Net achieved a Dice 
coefficient of 0.78 for prostate segmentation. Follow-
ing the inclusion of additional data from a second 
cohort, the model's accuracy improved, exceeding 
a Dice coefficient of 0.80. The accuracy of prostate 
segmentation in MRI images was assessed using 
in-house MRIs, yielding a Dice coefficient greater 
than 0.95. Moreover, following rigid fusion, the 
Dice coefficient between MRI and ultrasound (US) 
segmentations was determined to be 0.75. Post-fu-
sion, the distances between each lesion identified in 
MRI and the corresponding lesion in US were mea-
sured. The authors observed that the application  
of AI-driven image processing facilitates the automa-
tion of image fusion, as well as the identification and 
localization of prostate lesions, thereby enhancing 

to prostate delineation and automated segmentation 
in mpMRI, we identified a notable lack of uniformity 
in the methodologies employed for comparing re-
sults. The considerable heterogeneity in the assess-
ment protocols for the efficacy of neural networks 
significantly impedes the qualitative comparison 
of convolutional neural networks (CNNs). Studies 
utilized different datasets and evaluation metrics, 
making direct comparisons challenging. This diver-
sity often leads to the inability to compare studies 
directly, including statistical data, thus impeding 
meta-analysis. As of now, no guidelines or standard-
ization have been universally accepted. However, 
some studies have designed experiments specifically 
for network comparison [44]. 
We observed a significant lack of studies implement-
ing deep learning algorithms for automatic pros-
tate contouring in the practice of urologists per-
forming fusion biopsies. Despite numerous studies  
on mpMRI contouring, these are predominantly in-
tended as tools for radiologists, not for enhancing 
the workflow of urologists. In our review, we found 
only two studies that described the integration  
of deep learning algorithms into fusion biopsy sta-
tions, assessing their actual impact and accuracy in 
prostate contouring [31, 33].
Evaluating automated prostate delineation for fu-
sion biopsy include significant inter-institutional 
variability in clinical workflows. Established proto-
cols often entrust the delineation of prostate bound-
aries on T2-weighted MRI (T2W MRI) to radiologists 
or radiology technicians. However, at our institution, 
this task is handled by the urologists performing 
the biopsy. While the literature extensively explores 
deep learning algorithms for prostate delineation 
by radiologists, there is little research on the use  
of these algorithms by urologists. The final decision 
on the suitability of the contour for mpMRI-TRUS 
fusion biopsy rests with the urologist. Incorporating 
AI at this stage with sufficient accuracy and stability 
would significantly improve the urologist's workflow.
Another constraint pertains to the inherent com-
plexity of this domain. The development and imple-
mentation of deep learning algorithms for MRI-US 
fusion require collaborative efforts among specialists 
from various scientific disciplines. This interdisci-
plinary team should encompass software developers, 
physicians specializing in urology and/or radiology, 
as well as professionals in computer vision, biomedi-
cal engineering, or other relevant fields such as me-
chatronics.
A limitation of our review is the relatively small 
sample size [12] which may limit generalizability  
to a broader population and preclude meta-analysis. 
To mitigate these limitations, we employed a rigor-
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CNNs offer superior sensitivity and specificity com-
pared to traditional radiological methods. Addition-
ally, algorithms such as random forest classifiers 
and k-nearest neighbors have shown high predic-
tive accuracy, particularly when used in conjunction 
with mpMRI. These techniques provide a robust set  
of tools for clinicians in identifying CSPCa. The in-
tegration of CNNs into the segmentation of prostate 
MRI images during fusion biopsy holds significant 
promise for improving the detection and diagnosis  
of CSPCa. Despite the advancements, there is a no-
table gap in the practical application of these tools 
within clinical workflows. Future research should fo-
cus on creating user-friendly, efficient segmentation 
tools that can be seamlessly integrated into the fu-
sion biopsy process. Future research should focus on 
the development and refinement of these algorithms 
to ensure their robustness and applicability in clini-
cal settings, as well as exploring methods to over-
come current limitations such as the need for large 
training datasets and high computational power.  
Ultimately, the successful implementation of these 
advanced segmentation tools in clinical practice 
could lead to more accurate and efficient prostate 
cancer diagnoses, facilitating early detection and ap-
propriate therapeutic decisions. The ongoing evolu-
tion of AI in medical imaging heralds a promising 
future for more precise and personalized prostate 
cancer diagnostics and treatment.
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the procedure’s efficiency and reliability. The robot 
is currently undergoing pre-clinical testing.
Another argument in favor would be the reduction  
of the risk of human errors. The human factor is prone 
to mistakes due to various external factors such as 
fatigue, low quality of images, distractions etc. [46]. 
Liu et al. [40] in their experiment, demonstrated that 
the algorithm was more consistent with the ground 
truth than the second expert. The directions this 
technological trend and its application might take in-
clude the integration of CNNs into clinical practice  
on a larger scale for software-co-registered MRI-
targeted TRUS biopsy. Moving forward, automating 
the fusion biopsies could involve the development  
of technologies for automatic lesion delineation with-
in the prostate glands. A significant advancement has 
recently been made in this field. An article published 
in “The Lancet Oncology”, an internationally trust-
ed source of clinical research with an Impact Factor  
of 41.6, investigates the performance of AI systems 
in detecting CSPCa on MRI compared to radiologists 
using the prostate imaging – reporting and Data Sys-
tem version 2.1 (PI-RADS 2.1). The authors dem-
onstrate that AI was, on average, superior to radi-
ologists using PI-RADS 2.1 in detecting CSPCa. The 
study compared 62 radiologists against AI in a test 
group comprising 400 cases [47].

CONCLUSIONS

Our review of the literature demonstrates that vari-
ous CNN architectures have shown substantial po-
tential in improving the accuracy and efficiency  
of prostate segmentation in mpMRI images. Tătaru 
et al. [48] analyzed the application of machine 
learning in the diagnosis of prostate cancer and 
highlighted that studies have reported AUC values  
as high as 0.91 using CNNs. This suggests that 



Central European Journal of Urology
36

Supplementary Table 1. Ineligible studies for review

van Sloun et al. [I] TRUS images 

Tollens et al. [II] General review 

Bonekamp et al. [III] General review 

Suarez-Ibarrola et al. [IV] General review

Yilmaz et al. [V] Based on the patient after radiotherapy

Lin et al. [VI] No open access

Penzkofer et al. [VII] Position paper

Lin et al. [VIII] No open access

Hosseinzadeh et al. [IX] Lack of information about contouring prostate 

Soni et al. [X] Segmentation of the prostate cancer lesion region. Lack of information about contouring prostate

Khosravi et al. [XI] Lack of prostate segmentation description

Schelb et al. [XII] Classification of PI-RADS lesions

Winkel et al. [XIII] Classification of PI-RADS lesions

Kaneko et al. [XIV] No open access

Jimenez-Pastor et al. [XV] No open access

Guo et al. [XVI] Irrelevant topic for our paper

Zhang et al. [XVII] No open access

Labus et al. [XVIII] No open access

Zheng et al. [XIX] CSPCa lesion detection only

Al-Bourini et al. [XX] No open access

Khan et al. [XXI] General review

Saunders et al. [XXII] Compares how the strategies of transfer learning and aggregated training

Alzate-Grisales et al. [XXIII] Segmenting csPCa regions from MRI images. Lack of information about conturing prostate

Akhoondi and Baghshah [XXIV] irrevelant topic for our paper – histopatological images

Elmahdy et al. [XXV] Irrelevant topic for our paper – automatic re-contouring of follow-up scans for adaptive radiotherapy

Lee and Nishikwa [XXVI] Mammograms segmentation/transferability of a traditionally transfer-learned CNN

Huang et al. [XXVII] No statistical results about whole prostate contouring

Ren et al. [XXVIII] The algorithm does not utilize the convolutional neural network approach

Shao et al. [XXIX] Irrelevant topic for our paper – predict the Gleason Grade Group (GG-RP) of prostate cancer using bpMRI

CNN – convolutional neural networks; CSPCa – clinically significant prostate cancer; MRI – magnetic resonance imaging; PI-RADS – Prostate Imaging-Reporting and Data 
System; TRUS – transrectal ultrasound
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