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Introduction Radiomics in uro-oncology is a rapidly evolving science proving to be a novel approach  
for optimizing the analysis of massive data from medical images to provide auxiliary guidance in clinical 
issues. This scoping review aimed to identify key aspects wherein radiomics can potentially improve  
the accuracy of diagnosis, staging, and grading of renal and bladder cancer.
Material and methods A literature search was performed in June 2022 using PubMed, Embase,  
and Cochrane Central Controlled Register of Trials. Studies were included if radiomics were compared 
with radiological reports only.
Results Twenty-two papers were included, 4 were pertinent to bladder cancer, and 18 to renal cancer. 
Radiomics outperforms the visual assessment by radiologists in contrast-enhanced computed tomog-
raphy (CECT) to predict muscle invasion but are equivalent to CT reporting by radiologists in predicting 
lymph node metastasis. Magnetic resonance imaging (MRI) radiomics outperforms radiological report-
ing for lymph node metastasis. Radiomics perform better than radiologists reporting the probability  
of renal cell carcinoma, improving interreader concordance and performance. Radiomics also helps  
to determine differences in types of renal pathology and between malignant lesions from their benign 
counterparts. Radiomics can be helpful to establish a model for differentiating low-grade from high-
grade clear cell renal cancer with high accuracy just from contrast-enhanced CT scans.
Conclusions Our review shows that radiomic models outperform individual reports by radiologists  
by their ability to incorporate many more complex radiological features.
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INTRODUCTION

Prostate, bladder, and kidney cancers are the most 
frequent tumors faced by urologists. 
Renal cell carcinoma (RCC) is the 14th cancer in the 
world in the number of new cases (431000/year) and 
the 15th in the number of deaths (179000/year) [1]. 

Bladder cancer is the 10th most common cancer, 
with 573278 estimated new cases and 212536 deaths 
worldwide in 2020 [1].
Urologists commonly rely on radiological features 
of either contrast-enhanced computed tomography 
(CECT) scan or magnetic resonance imaging (MRI) 
for both diagnosis and staging in urological cancers. 
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eters that preclude radiologists from being unable 
to conclusively provide a diagnosis (Figure 1B). This 
limitation is potentiated by the inability to make 
direct comparisons between two different imaging 
modalities. 
As this topic is far-reaching, we limited our scope  
to answer the following questions that are con-
sidered rate limiting before choosing a modality  
of intervention in a two-part series: part 1 is focused 
on urinary bladder and renal cancers, whilst part 2 
is on prostate cancer.

MATERIAL AND METHODS

Evidence acquisition

The literature search was performed on 9th June 
2022 using PubMed, Embase, and Cochrane Cen-
tral Controlled Register of Trials (CENTRAL).  
The following terms and Boolean operators were 
used: (Machine learning OR radiomics) AND (com-
puted tomography OR magnetic resonance imag-
ing) AND (bladder cancer OR bladder neoplasm); 
(Machine learning OR radiomics) AND (computed 
tomography OR magnetic resonance imaging) AND 
(prostate cancer OR prostate neoplasms); (Machine 
learning OR radiomics) AND (computed tomography 
OR magnetic resonance imaging) AND (renal cancer 
OR renal neoplasms). No date limits were imposed. 

Selection criteria

Studies were included if radiomics were compared 
with radiological reports only. Only English language 
papers were accepted. Pediatric and animal studies 
were excluded. Meeting abstracts, letters to the edi-
tor, and editorials were also excluded.

Yet, these imaging modalities may miss or sometimes 
under/overstage tumours as was noted by Kim et al. 
[2]. With a rise in incidentally detected small renal 
masses, this problem has recently increased. Addi-
tionally, renal tumour patients are often subjected to 
further interventions and 20% of surgically removed 
renal tumours eventually turn out benign on histo-
pathology despite increased sensitivity using both 
CECT and MRI [3]. Likewise, in bladder cancers  
as well, urological decisions on the initial modality  
of intervention and prognostic significance fun-
damentally rely on a radiologist’s interpretation  
of the Vesical imaging reporting and data system 
(VI-RADS) score in MRI which superseded the limi-
tations of assessing muscle invasion [4]. Yet, this too 
is not without its limitations.
Radiomics in uro-oncology is a rapidly evolving science 
proving to be a novel method for enhancing the analy-
sis of large data from medical images to offer auxiliary 
guidance in clinical issues. These techniques, in fact, 
being able to directly process images, have allowed  
a series of research sub-lines: detection of malignant 
and benign tumors, segmentation, detection of tumor 
grading, prediction of the most appropriate therapy, 
understanding of the evolution of tumors, and efficacy 
of given therapies (Figure 1A) [5].
Our scoping review aimed to identify key oncologi-
cal aspects wherein radiomics can potentially im-
prove the accuracy of either diagnosis, staging, or 
grading of kidney, bladder, and prostate cancer. Of-
ten urologists rely on investigative reports from ra-
diologists and need to deploy multiple investigations 
before embarking on a definitive treatment for these 
tumours. We hypothetically believe that radiomics, 
by its inherent ability to integrate key data signa-
tures from large image bases pertinent to a pathol-
ogy, may be able to bridge the gap of missing param-

Figure 1. A) Radiomics image processing. B) Inherent ability of radiomics to integrate key data.signatures from large image bases.
CT – computed tomography; MRI – magnetic resonance imaging; PET – positron emission tomography; ML – machine learning, DL – deep learning
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of radiomics and compare and contrast this vis a-vis 
radiological investigations pertinent only to aspects 
of bladder and renal cancer. The following aspects 
are discussed:
– Bladder cancer: prediction of muscle invasion and 

lymph node metastasis 
– Renal cancer: differentiating benign from malig-

nant lesions, nuclear grade in renal cell carcino-
ma (RCC), identification of histological variants 
of RCC and lymph node, and distant metastasis.

DISCUSSION

Bladder cancer

Prediction of muscle invasion

Discrimination between muscle-invasive and 
non-muscle-invasive disease is of paramount im-
portance in the management of bladder cancer 
patients. CECT has many weaknesses for local tu-
mor staging, mainly a lack of visualization of the 
bladder wall and specificity for early detection  
of extravesical invasion of the tumor. Findings 
suggestive of extravesical invasion of the tumor 
are unspecific, including perivesical fat stranding 
and adjacent soft tissue nodularity [28]. A study 
on 265 patients by Tritschler et al. reported that 
the inability of CECT to accurately evaluate the 
deepness of tumor invasion (low accuracy rate  
at 49%), leads to over-staging in 23.4% and under-
staging in 24.7% of cases, as confirmed by cystec-
tomy [29]. The use of MRI and the introduction 
of the VI-RADS score overcame the limitation  
of CECT scan in assessing muscle invasion [4].
Radiomics has the potential to better assess bladder 
wall invasion as compared with CT and MRI. 
Cui et al. retrospectively assessed 188 patients with 
histopathologically confirmed bladder cancer who 
underwent CECT before transurethral resection 
[6]. Patients were divided into the training (120 
patients) and validation group (68 patients). Two 
radiologists evaluated each CT study for the pre-
operative prediction of muscle-invasion. Radiomics 
analysis was also performed including 102 radiomics 
feature extraction and model development (data nor-
malization, feature redundancy reduction, feature 
selection, and classifier). The radiomics model out-
performed the visual assessment of both radiologists 
in the training [area under the curve (AUC) 0.979  
vs 0.865 vs 0.894] and validation dataset (AUC 0.894 
vs 0.766 vs 0.826). The specificity of the radiomics 
model was better than the radiologists (85.3–96.7%  
vs 47.1–58.3%,), but sensitivity did not significantly 
differ (79.4–90% versus 91.2–96.7%).

Study screening and selection

Two independent authors screened all retrieved re-
cords through Covidence Systematic Review Man-
agement® (Veritas Health Innovation, Melbourne, 
Australia). Discrepancies were solved by a discus-
sion. Meeting abstracts, reviews, case reports, letters 
to the editor, and editorials were excluded. The full 
text of the screened papers was selected if found rel-
evant to the present review. 

Evidence synthesis

Literature screening

The literature search retrieved 2621 papers. A total 
of 729 duplicate studies were automatically excluded. 
After title and abstract screening of the remaining 
1892 unique references, 1512 records were exclud-
ed because they were irrelevant to this study's aim.  
The full texts of the remaining 380 studies were as-
sessed for eligibility. Finally, 39 studies were accepted 
and included. Four papers were pertinent to bladder 
cancer [6–9], and 18 to renal cancer [10, 11, 20–27, 
12–19]. Figure 2 shows the flow chart of the litera-
ture search. In part 1 we discuss the role and utility 

Figure 2. Flow diagram of the literature screening.
n – number
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better than radiologists and random guessing, show-
ing no statistically significant differences in patients 
with negative or positive lymph node disease. 
Conversely, Wu et al. demonstrated that T2-weight-
ed MRI-based radiomics performed better than 
radiologists in assessing lymph node metastasis  
in 103 patients [8]. Radiologists’ subjective MRI 
status of lymph nodes showed that 55.2% (16/29)  
of the pN1-3 patients were understaged (reported  
to be cN0), while 6.8% (5/74) of the pN0 patients 
were overstaged (reported to be cN1-3). In the ra-
diomics feature, only 18.8% (16/85) of cN0 patients 
were understaged. The radiomics model also showed 
good discrimination with an optimism-corrected 
AUC of 0.8872 (95% CI, 0.7827–0.9496).

Kidney cancer

Differentiating benign from malignant tumors

Xu et al. built a MRI-based deep learning (DL) model 
for the distinction of malignant and benign kidney tu-
mors and to evaluate its discrimination performance 
with that of radiomics models and by radiologists [24].  
The authors found that the AUC of the DL model based 
on T2-weighted imaging (T2WI), diffusion-weighted 
imaging (DWI), and their combination was 0.906, 
0.846, and 0.925 in the testing cohorts, respectively. 
The AUC of the radiomics models based on T2WI, 
DWI, and the combination was 0.824, 0.742, and 0.826 
in the testing cohorts, which was better than the AUC 
of two radiologists (0.724 and 0.667) in the testing co-
horts. Therefore, the MRI-based DL model was valu-
able for discriminating benign from malignant renal 
tumors, demostrating that an association of signatures 
that can be assessed in radiomic models was superior 
to individual radiological features. 
Said et al. assessed 104 RCCs [29 papillary (pRCC), 
51 clear cell RCC (ccRCC), and 24 subtypes] and  
21 benign tumors in 125 patients [18]. Significant 
qualitative and quantitative radiomics features were 
included for analysis. Models with the best diagnos-
tic performance on validation sets showed an AUC 
of 0.73 [confidence interval (CI) 0.5–0.96] for dif-
ferentiating RCC from benign tumors: AUC of 0.77  
(CI 0.62–0.92) for diagnosing ccRCC (using radiomics 
features), and AUC of 0.74 (CI 0.53–0.95) for diag-
nosing pRCC (using qualitative features).
In the study by Sun et al. comparing outcomes  
of radiomics models vis a vis the CECT reports  
of experts radiologists, radiomics performed better  
in differentiating benign from malignant lesions  
or ccRCC from papillary RCC and chromophobe 
RCC (chrRCC) as well as in distinguishing ccRCC 
from angiomyolipoma (AML) and oncocytomas [20].  

Xu et al. assessed 54 patients with pathologically 
proven non-muscle-invasive (24 patients) and mus-
cle-invasive bladder cancer (30 patients) who un-
derwent preoperative 3-T MRI with T2-weighted 
and multi-b-value diffusion-weighted sequences [9].  
A total of 1104 radiomics features were extracted 
from bladder tumors and a support vector machine 
with recursive feature abolition and synthetic mi-
nority oversampling method was applied to build the 
model. The performance of the radiomics model was 
matched with that of an expert radiologist. The ra-
diomics model showed a sensitivity of 92.6%, speci-
ficity of 100%, and accuracy of 96.3% (AUC 0.9857) 
which outperformed the radiologist’s visual assess-
ment (sensitivity, specificity, and accuracy of 91.11%, 
88.89%, and 90.12%, respectively).

Prediction of lymph node metastasis

Accurately predicting the presence of lymph node 
metastasis in bladder cancer is integral for TNM 
classification upon which the entire treatment and 
prognosis rest. From the days of using deoxyribo-
nucleic acid flow cytometry techniques [30] to more 
advanced methods like gene transcription signa-
tures [31] and nomograms [32], urologists rely on 
radiological evidence in imaging to determine this.  
Of these, CECT and MRI are the standard and posi-
tron emission tomography scans are the newer mo-
dalities of choice [33]. Yet there is significant variabil-
ity in the accuracy that current imaging modalities 
achieve across different studies because CT and 
MRI criteria for lymph node metastasis rely mainly 
on lymph node size. However, up to 25% of muscle-
invasive bladder cancer patients who are clinically 
node-negative have occult metastases at radical cys-
tectomy and pelvic lymph node dissection [34]. 
In a recent meta-analysis of 860 patients, Kozikow- 
ski et al. concluded that radiomics shows high di-
agnostic performance in predicting MIBC, is rela-
tively homogeneous in its diagnostic accuracy and 
has the potential to become a useful adjunct in the 
clinical management of bladder cancer [35]. Here,  
we analyzed if the ability of radiomics to apply rapid-
ly evolving imaging analysis methods using artificial 
intelligence algorithms could prove equally useful  
in lymph node metastasis too.
Starmans et al. extracted 564 radiomics features af-
ter manual segmentation of lymph nodes in 209 pa-
tients with clinically T2-T4aN0-N1M0 muscle-inva-
sive bladder cancer, of whom preoperative CT scans 
and pathology reports were available [7]. Among the 
included patients, 50 patients were pathologically 
proven node-negative at radical cystectomy. Seven ra-
diomics models were developed but none performed 
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After 10-fold cross-validation, the radiologic-radiomic 
machine learning (ML) model yielded the follow-
ing performance values for differentiating ccRCCs 
from pRCCs and chrRCCs, ccRCCs from fat-poor 
angioleiomyolipomas (fp-AML) and oncocytomas, 
and pRCCs and chrRCCs from fp-AML and oncocy-
tomas: a sensitivity of 90.0%, 86.3%, and 73.4% and  
a specificity of 89.1%, 83.3%, and 91.7%, respectively. 
Conversely, expert-level radiologists had great varia-
tion in performance for differentiating benign from 
malignant solid kidney masses. Therefore, radiolog-
ic-radiomics can be a potential tool to improve inter-
reader performance and concordance. 
Renal oncocytoma accounts for 18% of all benign 
renal tumors and is often diagnosed post-surgery 
due to radiological misdiagnosis for absence of CT 
specificity [36]. This misdiagnosis is generally owing  
to overlapping imaging features. Li et al. described 
the building of a radiomics nomogram based on clini-
cal data and radiomics signature for the preopera-
tive differentiation of renal oncocytoma from ccRCC 
on tri-phasic contrast-enhanced CT [13]. Central 
stellate area and perirenal fascia thickening were 
selected to build the clinical factors model. Eleven 
radiomics features were combined to construct the 
radiomics signature. The AUCs of the radiomics 
nomogram, which was based on the selected clini-
cal factors and Rad-score, were 0.960 and 0.898  
in the training and validation sets, respectively.  
The decision curves of the radiomics nomogram  
and radiomics signature in the validation set indi-
cated an overall net benefit over the clinical factors 
model. In a further study, the same group evaluated 
pre-operative differentiation between renal oncocy-
toma and chRCC [14]. This study aimed to develop 
and validate a CT-based radiomics nomogram for 
the pre-operative differentiation of renal oncocyto-
ma from chRCC. Twelve features from CT images 
were selected to develop the radiomics signature. 
The radiomics nomogram combining a clinical factor 
(segmental enhancement inversion) and radiomics 
signature showed an AUC value of 0.988 in the vali-
dation set. Decision curve analysis revealed that the 
diagnostic performance of the radiomics nomogram 
was better than the clinical model and the radiomics 
signature.
Another study aimed to discriminate fp-AML from 
ccRCC by constructing radiomics-based logistic clas-
sifiers in comparison with conventional CT analy-
sis at three CT phases [15]. The authors found that 
whole-tumor radiomics CT analysis showed superior 
characteristics to conventional CT in the differen-
tiation of fp-AML from ccRCC. Cyst degeneration, 
pseudocapsule, and sum rad-score were the most no-
table aspects.

Nie et al. developed a radiomics nomogram for preop-
erative differentiating renal angiomyolipoma with-
out visible fat from homogeneous ccRCC (hm-ccRCC) 
[17]. Fourteen features were used to construct the 
radiomics signature. The radiomics signature dem-
onstrated good discrimination in the training (AUC, 
0.879; 95%; [CI], 0.793–0.966) and the validation set 
(AUC, 0.846; 95% CI, 0.643–1.000). The radiomics 
nomogram showed good calibration and discrimina-
tion in the training set (AUC, 0.896; 95% CI, 0.810–
0.983) and the validation set (AUC, 0.949; 95% CI, 
0.856–1.000) and showed better discrimination profi-
ciency compared with the clinical factor model (AUC, 
0.788; 95% CI, 0.683–0.893) in the training set. Deci-
sion curve analysis proved that the nomogram out-
performed the clinical factors model and radiomics 
signature in terms of clinical utility.

Predicting nuclear grade in renal cell carcinoma

Tumor grade is one of the well-known prognos-
tic factors of ccRCC and is regarded as an predictor  
of cancer-specific survival [37]. Radiomics analysis  
is a potentially useful method that could be used to 
assess the pathological grade for guiding personalized 
cancer treatment.
Sun et al. demonstrated that radiomics combined 
with CT images were useful to establish a model for 
differentiating low-grade [2016 International Society 
of Urological Pathology (ISUP)/ World Health Orga-
nization (WHO) grade 1–2] from high-grade (2016 
ISUP/WHO grade 3–4) ccRCC [19]. Three-phase 
CECT images of 227 patients with ISUP-grade ccRCC 
(155 cases in the low-grade group and 72 cases in the 
high-grade group) were analyzed retrospectively and 
a model was built using the optimal features. The sup-
port vector machine (SVM) model constructed using 
the screening features for the 2-stage joint samples 
effectively discriminated high- and low-grade ccRCC, 
and obtained the highest prediction accuracy (AUC 
value in the training and validation group of 0.88 and 
0.91, respectively). 
In a 2020 study, Han et al. compared the prediction 
models for the ISUP/WHO grade of ccRCC based 
on CT radiomics and conventional CECT [11]. The 
corticomedullary phase images were gathered from  
119 cases of high-grade (3 and 4) and low-grade  
(1 and 2) ccRCC. In the training set, the C-statistics 
of the radiomics prediction model was statistically 
higher than that of the CECT. In addition, validation 
set decision curve analysis showed net benefit in-
crease of CT radiomics prediction model in the range 
of 3–81% over CECT. 
Yi et al. developed a ML radiomic model achieving  
a good performance in discriminating low-grade from 
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Wang et al. developed a CT-based radiomics model 
to distinguish ccRCC from non-ccRCC [21]. A total 
of 190 patients were included, 147 cases with ccRCC 
and 43 cases with non-ccRCC (24 cases with papillary 
RCC, 13 chRCC, and 6 collecting duct carcinoma). 
The sensitivity and specificity of radiologist’s ability 
to differentiate ccRCC from non-ccRCC were 0.850 
and 0.581, respectively (AUC 0.69). The radiomics 
model augmented radiological diagnosis with a sensi-
tivity of 0.956 and a specificity of 0.538 (AUC 0.909).

Predicting/evaluating lymph node and distant 
metastasis in renal cancer

RCC presents with metastases in 15–30% of the cas-
es at the time of diagnosis, whilst 30% of localized 
RCC eventually progresses to metastasis [38].
In our review, only one study analyzed the use of ra-
diomics in predicting distant metastasis. Wen et al. 
examined the role of contrast-enhanced CT images 
in predicting synchronous distant metastasis in 172 
ccRCC patients [23]. They extracted 2994 quantitative 
radiomic features and the least absolute shrinkage and 
selection operator regression was applied for dimension 
reduction, feature selection, and model construction. 
Nine radiomic features were used for the construction 
of the synchronous distant metastasis prediction mod-
el. The authors found that the model yielded moderate 
diagnostic efficacy in both the training (AUC 0.89; 95% 
CI 0.81–0.97) and the validation cohort (AUC 0.83; 
95% confidence interval, 0.69–0.95) in predicting syn-
chronous distant metastasis. This model can be used 
as a non-invasive, personalized approach for distant 
metastasis prediction in patients with ccRCC.

Take-home messages 

Radiomics in muscle-invasive bladder cancer 
• Radiomics outperforms the visual assessment  

by radiologists in CECT to predict muscle inva-
sion 

• Specificity of the radiomics model was higher 
than the radiologists

• May be equivalent to CECT reporting by radiolo-
gists for diagnosis of MIBC and predicting lymph 
node metastasis.

• MRI radiomics outperforms radiological report-
ing for lymph node metastasis 

Radiomics in renal cancer
• Radiomics performs better than radiologists re-

porting the probability of RCC which was vali-
dated by deep learning models

• Radiologic-radiomic ML can be a potential way 
to improve interreader concordance and perfor-

the high-grade ccRCC [25]. A total of 264 patients 
with ccRCC (206 patients in the low-grade group and 
58 in the high-grade group) were included in this 
study. The model built with traditional radiological 
characteristics (baseline and post-enhancing CT den-
sity, and tumor size) reached an AUC of 0.9175 (95%  
CI: 0.8765–0.9585) and 0.8088 (95% CI: 0.7064–0.9113) 
in differentiating the low-grade from the high-grade 
ccRCC for the training cohort and the validation co-
hort, respectively. The radiomics model built with tex-
tural features yielded an AUC value of 0.8170 (95%  
CI: 0.7353–0.8987) and 0.8017 (95% CI: 0.6878–0.9157) 
for the training cohort and the validation cohort, re-
spectively. The combined model incorporating the tra-
ditional radiological characteristics with the radiomic 
textural features achieved the highest accuracy, 
with an AUC of 0.9235 (95% CI: 0.8646–0.9824) and  
an AUC of 0.9099 (95% CI: 0.8324–0.9873) for the 
training cohort and validation cohort, respectively.
Li et al. developed an MRI-based radiomic model for 
preoperative prediction WHO/ISUP nuclear grade  
in ccRCC [12]. A total of 379 patients with histologi-
cally confirmed ccRCC were included. The radiomic 
signature demonstrated a good performance in dis-
criminating high-grade (grades 3 and 4) from low-
grade (grades 1 and 2) ccRCC, with sensitivity, specific-
ity, and AUC of 77.3%, 80.0%, and 0.842, respectively.  
The radiomic model, combining radiomic signature 
and clinico-radiologic features, demonstrated good 
ability to predict high-grade tumors (sensitivity  
of 63.6%, specificity of 93.3%, and accuracy of 88.2%). 
Wang et al. proved that a radiological model con-
structed from CT radiomic features effectively pre-
dicted the WHO/ISUP pathological grade of ccRCC 
in 197 ccRCC patients. The prediction model con-
structed with seven radiomic features showed the 
best performance in identification for WHO/ISUP 
pathological grades, with AUC, sensitivity, and speci-
ficity of 0.89, 0.85, and 0.84 respectively. 

Predicting histological variants in renal cell 
carcinoma

The prognosis of ccRCC and non-ccRCC is different 
and the early diagnosis of RCC subtypes is important 
from a treatment point of view.
Meng et al. built a CT-based radiomics model  
for the differentiation of sarcomatoid RCC and 
ccRCC in 128 patients [16]. In total, 1029 radiomics 
features were gathered from the corticomedullary 
and nephrographic phase images. A statistically sig-
nificant difference was found between the radiomics 
model and the radiologist’s subjective findings with 
an AUC of 0.966 and 0.792, whilst the combined fea-
tures showed the highest accuracy (AUC 0.974).
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model validation. Possibly the lack of standardiza-
tion in how and what parameters must be chosen for 
each of these fundamentals of model building, also 
seen in our studies included, makes this science com-
plex and non-reproducible for everyone's interpreta-
tion. This was also noted in prior studies [39].
Whilst this science needs a large volume of data  
to create these signatures its utility in oncology  
is far-reaching for bladder and renal cancers. What 
is potentially required is a uniform way of interpre-
tation. Once achieved, radiomics will pave the way 
forward for radiologists to conclusively interpret any 
investigation, allowing urologists to have a possible 
non-invasive diagnosis and staging of tumors.

CONCLUSIONS

Our scoping review conclusively shows that radiomic 
models outperform individual reports by radiologists 
by their ability to incorporate many more complex 
radiological features.
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mance often seen even in expert-level radiolo-
gists reporting.

• Radiomics helps determine differences in types 
of renal pathology and between malignant le-
sions from their benign counterparts like fat 
poor AML or oncocytoma.

• Radiomics can be used to establish a model for 
differentiating low-grade (2016 ISUP/WHO 
grade 12) from high-grade (2016 ISUP/WHO 
grade 3–4) ccRCC with high accuracy just from 
CECT scans.

• Radiomics models can be used as a non-invasive, 
personalized approach for synchronous distant 
metastasis prediction in patients with ccRCC

Limitations and strengths of adopting radiomics

Conclusive evidence in our study shows that ra-
diomics outshines any individual radiological inves-
tigative modality for renal and bladder cancer and 
yet it has not gained widespread use. A plausible 
explanation is to examine how a radiomic model  
is constructed. A typical model involves three as-
pects: feature selection, modeling methodology, and 
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